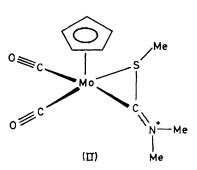

## Thiocarboxamido Complexes of Manganese and Molybdenum

By P. M. TREICHEL\* and W. K. DEAN


(Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706)

Summary Reaction of CpMo(CO)<sub>3</sub><sup>-</sup> and ClCSNMe<sub>2</sub> yields CpMo(CO)<sub>2</sub>CSNMe<sub>2</sub> which gives [CpMo(CO)<sub>2</sub>C(SMe)NMe<sub>2</sub>]<sup>+</sup> (isolated eventually as the PF<sub>6</sub><sup>-</sup> salt) with [Me<sub>3</sub>O]BF<sub>4</sub>; the same reactions are reported with Mn(CO)<sub>4</sub>PPh<sub>3</sub><sup>-</sup>; the structures of these complexes are believed to involve the C-S group as a bidentate three electron donor.

THIOCARBAMOYL metal complexes have been prepared in reactions involving nucleophilic attack of amines¹ on [CpFe(CO)<sub>2</sub>CS]<sup>+</sup> and of hydrosulphide ion² on [Pt(PPh<sub>3</sub>)<sub>2</sub>-(CNMe)<sub>2</sub>]<sup>2+</sup>. No one has yet described studies on the obvious alternative route to such compounds from a metal carbonyl anion and a thiocarbamoyl halide, though an analogous reaction with dimethylcarbamoyl chloride is known.³ We report here the preliminary results from such a study.



The reaction of either CpMo(CO)<sub>3</sub><sup>-</sup> or CpMo(CO)<sub>2</sub>PPh<sub>3</sub><sup>-</sup> with ClCSNMe<sub>2</sub> (THF, 25°, 12 h) gave, unexpectedly, a redbrown crystalline dicarbonyl complex (I), CpMo(CO)<sub>2</sub>-CSNMe<sub>2</sub>. Analogous products Mn(CO)<sub>4</sub>CSNMe<sub>2</sub> and Mn-(CO)<sub>3</sub>(PPh<sub>3</sub>)CSNMe<sub>2</sub> arise from Mn(CO)<sub>5</sub><sup>-</sup> and Mn(CO)<sub>4</sub>-(PPh<sub>3</sub>)<sup>-</sup> respectively.



The i.r. spectrum of (I) contains  $v_{CO}$  (1934, 1841 cm<sup>-1</sup>),  $v_{C-N}$  (1573 cm<sup>-1</sup>) and  $v_{CS}$  (1167 cm<sup>-1</sup>); the <sup>1</sup>H n.m.r. spectrum of this compound contains resonances at  $\tau$  4.58 (int. 5), 6.27(3), and 6.40(3) assignable to (Cp) and non-equivalent Me protons. To accord with this data and with the stoicheiometry the structure shown in the Figure is proposed. The CSNMe<sub>2</sub> ligand is presumably acting as a 3e donor. This formulation provides for restricted rotation of the C-N bond leading to non-equivalent methyl groups.

Both CpMo(CO)<sub>2</sub>CSNMe<sub>2</sub> and Mn(CO)<sub>3</sub>(PPh<sub>3</sub>)CSNMe<sub>2</sub> react with [Me<sub>3</sub>O]BF<sub>4</sub>, giving [CpMo(CO)<sub>2</sub>C(SMe)NMe<sub>2</sub>]+, isolated as a  $PF_6^-$  salt, (II), and  $[Mn(CO)_3(PPh_3)C(SMe) NMe_2]BF_4$ . The molybdenum species (II) has  $v_{co}$  at 2006 and  $1935 \text{ cm}^{-1}$ ,  $\nu_{\text{C-N}}$  at  $1616 \text{ cm}^{-1}$  and  $\nu_{\text{CS}}$  at  $1155 \text{ cm}^{-1}$ ;

and its <sup>1</sup>H n.m.r. spectrum contains singlet resonances at  $\tau$  3.98(5), 5.97(3), 6.07(3), and 7.65(3) assignable to the (Cp) protons, the two dissimilar N-Me groups, and the SMe group in structure (II).

(Received, 8th May 1972; Com. 782.)

L. Busetto, M. Graziani, and U. Belluco, Inorg. Chem., 1971, 10, 78.
W. J. Knebel and P. M. Treichel, Chem. Comm., 1971, 516.
R. B. King, M. B. Bisnette, and A. Fronzaglia, J. Organometallic Chem., 1966, 5, 341.